

Luma.LCD: Display drivers for PCD8544, ST7735, HT1621, UC1701X, LS013B4DN04

[image: _images/luma.lcd.svg]
 [https://travis-ci.org/rm-hull/luma.lcd][image: _images/badge.svg]
 [https://coveralls.io/github/rm-hull/luma.lcd?branch=master][image: _images/2018.svg][image: _images/luma.lcd1.svg]
 [https://pypi.python.org/pypi/luma.lcd][image: _images/luma.lcd2.svg]
 [https://pypi.python.org/pypi/luma.lcd]

	Introduction

	Installation
	Pre-requisites

	Connecting the display

	Installing from PyPI

	Python usage
	Pixel Drivers

	Seven-Segment Drivers

	Backlight Control

	Examples

	API Documentation
	luma.lcd.aux

	luma.lcd.device

	References

Contributing

Pull requests (code changes / documentation / typos / feature requests / setup)
are gladly accepted. If you are intending to introduce some large-scale
changes, please get in touch first to make sure we’re on the same page: try to
include a docstring for any new method or class, and keep method bodies small,
readable and PEP8-compliant. Add tests and strive to keep the code coverage
levels high.

GitHub

The source code is available to clone at: https://github.com/rm-hull/luma.lcd.git

Contributors

	Thijs Triemstra (@thijstriemstra)

	Dougie Lawson (@dougielawson)

	WsMithril (@WsMithril)

	Peter Martin (@pe7er)

	Saumyakanta Sahoo (@somu1795)

ChangeLog

	Version

	Description

	Date

	1.1.0

	
	Add LS013B4DN04 Monochrome LCD display driver

	2018/01/01

	1.0.3

	
	Changed version number to inside luma/lcd/__init__.py

	2017/11/23

	1.0.2

	
	Documentation and dependencies updates

	2017/10/30

	1.0.1

	
	Update dependencies

	2017/09/14

	1.0.0

	
	Stable version

	Remove deprecated methods

	2017/09/09

	0.5.0

	
	Add UC1701X Monochrome LCD display driver

	2017/06/11

	0.4.1

	
	luma.core 0.9.0 or newer is required now

	2017/04/22

	0.4.0

	
	Add HT1621 seven-segment driver

	2017/04/22

	0.3.3

	
	Add deprecation warning for bcm_LIGHT

	2017/03/14

	0.3.4

	
	Add support for 128x128 display size for ST7735

	Implement horizontal and vertical offsets (for ST7735)

	Make backlight configurable as active high or active low

	2017/04/17

	0.3.3

	
	Add deprecation warning for bcm_LIGHT

	2017/03/14

	0.3.2

	
	Raise error.UnsupportedPlatform if RPi.GPIO is not available

	2017/03/08

	0.3.0

	
	Add ST7735 Color TFT LCD display driver

	Removed width and height parameters from device constructors

	BREAKING CHANGES: Move backlight class to different package

	2017/03/05

	0.2.3

	
	Allow PCD8544 driver constructor to accept any args

	2017/03/02

	0.2.2

	
	Restrict exported Python symbols from luma.lcd.device

	2017/03/02

	0.2.1

	
	Bugfix: Backlight didn’t switch off properly

	Add tests

	2017/01/23

	0.2.0

	
	BREAKING CHANGES: Package rename to luma.lcd

	2017/01/13

	0.0.1

	
	Bit-bang version using wiringPi

	2013/01/28

The MIT License (MIT)

Copyright (c) 2013-18 Richard Hull & Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Introduction

Interfacing small LCD displays with the PCD8544, ST7735, HT1621, UC1701X and
LS013B4DN04 driver in Python using SPI on the Raspberry Pi and other
linux-based single-board computers: the library provides a Pillow-compatible
drawing canvas, and other functionality to support:

	scrolling/panning capability,

	terminal-style printing,

	state management,

	color/greyscale (where supported),

	dithering to monochrome

The PCD8544 display pictured below was used originally as the display for
Nokia 5110 [https://en.wikipedia.org/wiki/Nokia_5110] mobile phones,
supporting a resolution of 84 x 48 monochrome pixels and a switchable
backlight:

[image: _images/pcd8544.png]
They are now commonly recycled, and sold on ebay with a breakout board and SPI
interface.

The ST7735 display supports a resoltion of 160 x 128 RGB pixels (18-bit / 262K
colors) with a switchable backlight:

[image: _images/st7735.jpg]
The HT1621 display (as purchased) supports six 7-segment characters with a
switchable backlight:

[image: _images/ht1621.jpg]
The UC1701X display supports a resolution of 128 x 64 monochrome pixels with a
switchable backlight:

[image: _images/uc1701x.png]
The LS013B4DN04 display supports a resolution of 96 x 96 monochrome pixels:

[image: _images/ls013b4dn04.jpg]

See also

Further technical information for the specific device can be found in the
datasheet below:

	PCD8544

	ST7735

	HT1621

	UC1701X

	LS013B4DN04

As well as display drivers for the physical device, there are emulators that
run in real-time (with pygame) and others that can take screenshots, or
assemble animated GIFs, as per the examples below (source code for these is
available in the examples [https://github.com/rm-hull/luma.examples]
repository.

Installation

Note

The library has been tested against Python 2.7, 3.4 and 3.5.

For Python3 installation, substitute the following in the
instructions below.

	pip ⇒ pip3,

	python ⇒ python3,

	python-dev ⇒ python3-dev,

	python-pip ⇒ python3-pip.

It was originally tested with Raspbian on a rev.2 model B, with a vanilla
kernel version 4.1.16+, and has subsequently been tested on Raspberry Pi
model A, model B2 and 3B (Debian Jessie) and OrangePi Zero (Armbian Jessie).

Pre-requisites

Enable the SPI port:

$ sudo raspi-config
> Advanced Options > A6 SPI

If raspi-config is not available, enabling the SPI port can be done
manually [http://elinux.org/RPiconfig#Device_Tree].

Ensure that the SPI kernel driver is enabled:

$ ls -l /dev/spi*
crw-rw---- 1 root spi 153, 0 Nov 25 08:32 /dev/spidev0.0
crw-rw---- 1 root spi 153, 1 Nov 25 08:32 /dev/spidev0.1

or:

$ lsmod | grep spi
spi_bcm2835 6678 0

Then add your user to the spi and gpio groups:

$ sudo usermod -a -G spi pi
$ sudo usermod -a -G gpio pi

Log out and back in again to ensure that the group permissions are applied
successfully.

Connecting the display

	If you don’t want to solder directly on the Pi, get 2.54mm 40 pin female
single row headers, cut them to length, push them onto the Pi pins, then
solder wires to the headers.

	If you need to remove existing pins to connect wires, be careful to heat
each pin thoroughly, or circuit board traces may be broken.

	Triple check your connections. In particular, do not reverse VCC and GND.

The GPIO pins used for this SPI connection are the same for all versions of the
Raspberry Pi, up to and including the Raspberry Pi 3 B.

Warning

There appears to be varying pin-out configurations on different modules - beware!

Note

	If you’re already using the listed GPIO pins for Data/Command and/or Reset,
you can select other pins and pass gpio_DC and/or gpio_RST
argument specifying the new GPIO pin numbers in your serial interface create
call (this applies to both PCD8544 and ST7735).

	Because CE is connected to CE0, the display is available on SPI port 0. You
can connect it to CE1 to have it available on port 1. If so, pass
port=1 in your serial interface create call.

PCD8544

	LCD Pin

	Remarks

	RPi Pin

	RPi Function

	RST

	Reset

	P01-18

	GPIO 24

	CE

	Chip Enable

	P01-24

	GPIO 8 (CE0)

	DC

	Data/Command

	P01-16

	GPIO 23

	DIN

	Data In

	P01-19

	GPIO 10 (MOSI)

	CLK

	Clock

	P01-23

	GPIO 11 (SCLK)

	VCC

	+3.3V Power

	P01-01

	3V3

	LIGHT

	Backlight

	P01-12

	GPIO 18 (PCM_CLK)

	GND

	Ground

	P01-06

	GND

ST7735

Depending on the board you bought, there may be different names for the same
pins, as detailed below.

	LCD Pin

	Remarks

	RPi Pin

	RPi Function

	GND

	Ground

	P01-06

	GND

	VCC

	+3.3V Power

	P01-01

	3V3

	RESET or RST

	Reset

	P01-18

	GPIO 24

	A0 or D/C

	Data/command

	P01-16

	GPIO 23

	SDA or DIN

	SPI data

	P01-19

	GPIO 10 (MOSI)

	SCK or CLK

	SPI clock

	P01-23

	GPIO 11 (SCLK)

	CS

	SPI chip select

	P01-24

	GPIO 8 (CE0)

	LED+ or BL

	Backlight control

	P01-12

	GPIO 18 (PCM_CLK)

	LED-

	Backlight ground

	P01-06

	GND

HT1621

	LCD Pin

	Remarks

	RPi Pin

	RPi Function

	GND

	Ground

	P01-06

	GND

	VCC

	+3.3V Power

	P01-01

	3V3

	DAT

	SPI data

	P01-19

	GPIO 10 (MOSI)

	WR

	SPI clock

	P01-23

	GPIO 11 (SCLK)

	CS

	SPI chip select

	P01-24

	GPIO 8 (CE0)

	LED

	Backlight control

	P01-12

	GPIO 18 (PCM_CLK)

UC1701X

The UC1701X doesn’t appear to work from 3.3V, but does on
the 5.0V rail.

	LCD Pin

	Remarks

	RPi Pin

	RPi Function

	ROM_IN

	Unused

	
	

	ROM_OUT

	Unused

	
	

	ROM_SCK

	Unused

	
	

	ROM_CS

	Unused

	
	

	LED A

	Backlight control

	P01-12

	GPIO 18 (PCM_CLK)

	VSS

	Ground

	P01-06

	GND

	VDD

	+5.0V

	P01-02

	5V0

	SCK

	SPI clock

	P01-23

	GPIO 11 (SCLK)

	SDA

	SPI data

	P01-19

	GPIO 10 (MOSI)

	RS

	Data/command

	P01-16

	GPIO 23

	RST

	Reset

	P01-18

	GPIO 24

	CS

	SPI chip select

	P01-24

	GPIO 8 (CE0)

LS013B4DN04

Also known as Adafruit_1393

	LCD Pin

	Remarks

	RPi Pin

	RPi Function

	VIN

	+3.3V

	P01-01

	3V3

	3V3

	+3.3V

	P01-01

	3V3

	GND

	Ground

	P01-06

	GND

	SCLK

	SPI clock

	P0-23

	GPIO 11 (SCLK)

	MOSI

	SPI data

	P01-19

	GPIO 10 (MOSI)

	CS

	SPI chip select

	P01-24

	GPIO 8 (CE0)

	EXTMD

	External mode

	P01-14

	GND

	DISP

	Display on/off

	P01-16

	GPIO 23

	EXTIN

	PWM clock

	P01-12

	GPIO 18 (PWM0)

Installing from PyPI

Install the dependencies for library first with:

$ sudo usermod -a -G spi,gpio pi
$ sudo apt-get install python-dev python-pip
$ sudo -i pip install --upgrade pip setuptools
$ sudo apt-get purge python-pip

Warning

The default pip bundled with apt on Raspbian is really old, and can
cause components to not be installed properly. Please ensure that pip 9.0.1
is installed prior to continuing:

$ pip --version
pip 9.0.1 from /usr/local/lib/python2.7/dist-packages (python 2.7)

Proceed to install latest version of the library directly from
PyPI [https://pypi.python.org/pypi?:action=display&name=luma.lcd]:

$ sudo -H pip install --upgrade luma.lcd

Python usage

Pixel Drivers

The PCD8544 is driven with python using the implementation in the
luma.lcd.device.pcd8544 class. Likewise, to drive the ST7735,
UC1701X or LS013B4DN04, use the luma.lcd.device.st7735,
luma.lcd.device.uc1701x, luma.lcd.device.ls013b4dn04 or
class respectively. Usage is very simple if you have ever used Pillow [https://pillow.readthedocs.io/en/latest/] or PIL.

First, import and initialise the device:

from luma.core.interface.serial import spi
from luma.core.render import canvas
from luma.lcd.device import pcd8544, st7735, uc1701x, ls013b4dn04

serial = spi(port=0, device=0, gpio_DC=23, gpio_RST=24)
device = pcd8544(serial)

The display device should now be configured for use. Note, all the example code
snippets in this section are interchangeable between PCD8544 and ST7735
devices.

The pcd8544, st7735,
uc1701x and
ls013b4dn04 classes all expose a
display() method which takes an image with
attributes consistent with the capabilities of the device. However, for most
cases, for drawing text and graphics primitives, the canvas class should be
used as follows:

with canvas(device) as draw:
 draw.rectangle(device.bounding_box, outline="white", fill="black")
 draw.text((30, 40), "Hello World", fill="red")

The luma.core.render.canvas [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.render.canvas] class automatically creates an
PIL.ImageDraw [https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw] object of the correct dimensions and bit depth suitable
for the device, so you may then call the usual Pillow methods to draw onto the
canvas.

As soon as the with scope is ended, the resultant image is automatically
flushed to the device’s display memory and the PIL.ImageDraw [https://pillow.readthedocs.io/en/latest/reference/ImageDraw.html#module-PIL.ImageDraw] object is
garbage collected.

Color Model

Any of the standard PIL.ImageColor [https://pillow.readthedocs.io/en/latest/reference/ImageColor.html#module-PIL.ImageColor] color formats may be used, but
since the PCD8544 LCD is monochrome, only the HTML color names
"black" and "white" values should really be used; in
fact, by default, any value other than black is treated as white. The
luma.core.render.canvas [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.render.canvas] object does have a dither flag
which if set to True, will convert color drawings to a dithered monochrome
effect (see the 3d_box.py example, below).

with canvas(device, dither=True) as draw:
 draw.rectangle((10, 10, 30, 30), outline="white", fill="red")

Note that there is no such limitation for the ST7735 device which supports 262K
colour RGB images, whereby 24-bit RGB images are downscaled to 18-bit RGB.

Landscape / Portrait Orientation

By default the PCD8544, ST7735 and UC1701X displays will all be oriented in
landscape mode (84x48, 160x128 and 128x64 pixels respectively). The LS013B4DN04
supports a native resolution of 96x96 pixels. Should you have an application
that requires the display to be mounted in a portrait aspect, then add a
rotate=N parameter when creating the device:

from luma.core.interface.serial import spi
from luma.core.render import canvas
from luma.lcd.device import pcd8544

serial = spi(port=0, device=0, gpio_DC=23, gpio_RST=24)
device = pcd8544(serial, rotate=1)

Box and text rendered in portrait mode
with canvas(device) as draw:
 draw.rectangle(device.bounding_box, outline="white", fill="black")
 draw.text((10, 40), "Hello World", fill="red")

N should be a value of 0, 1, 2 or 3 only, where 0 is no rotation, 1 is
rotate 90° clockwise, 2 is 180° rotation and 3 represents 270° rotation.

The device.size, device.width and device.height
properties reflect the rotated dimensions rather than the physical dimensions.

Seven-Segment Drivers

The HT1621 is driven with the luma,lcd.device.ht1621 class, but is
not accessed directly: it should be wrapped with the
luma.core.virtual.sevensegment [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.virtual.sevensegment] wrapper, as follows:

from luma.core.virtual import sevensegment
from luma.lcd.device import ht1621

device = ht1621()
seg = sevensegment(device)

The seg instance now has a
text property which may be
assigned, and when it does will update all digits according to the limited
alphabet the 7-segment displays support. For example, assuming there are 2
cascaded modules, we have 16 character available, and so can write:

seg.text = "HELLO"

Rather than updating the whole display buffer, it is possible to update
‘slices’, as per the below example:

seg.text[0:5] = "BYE"

This replaces HELLO in the previous example, replacing it with BYE.
The usual python idioms for slicing (inserting / replacing / deleteing) can be
used here, but note if inserted text exceeds the underlying buffer size, a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

Floating point numbers (or text with ‘.’) are handled slightly differently - the
decimal-place is fused in place on the character immediately preceding it. This
means that it is technically possible to get more characters displayed than the
buffer allows, but only because dots are folded into their host character.

Backlight Control

These displays typically require a backlight to illuminate the liquid crystal
display: the luma.lcd.aux.backlight class allows a BCM pin to
be specified to control the backlight through software.

Examples

After installing the library, head over to the luma.examples [https://github.com/rm-hull/luma.examples]
repository. Details of how to run the examples is shown in the example repo’s README.

API Documentation

LCD display drivers.

[image: Inheritance diagram of luma.core.device, luma.core.mixin, luma.core.virtual, luma.lcd.device, luma.lcd.aux]

luma.lcd.aux

	
class luma.lcd.aux.backlight(gpio=None, gpio_LIGHT=18, active_low=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Controls a backlight (active low), assumed to be on GPIO 18 (PWM_CLK0) by default.

	Parameters

	
	gpio – GPIO interface (must be compatible with RPi.GPIO [https://pypi.python.org/pypi/RPi.GPIO]).

	gpio_LIGHT (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the GPIO pin to use for the backlight.

	Raises

	luma.core.error.UnsupportedPlatform [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.error.UnsupportedPlatform] – GPIO access not available.

	
enable(value)

	Switches on the backlight on and off.

	Parameters

	value (bool [https://docs.python.org/3/library/functions.html#bool]) – Switched on when True supplied, else False switches it off.

luma.lcd.device

Collection of serial interfaces to LCD devices.

	
class luma.lcd.device.pcd8544(serial_interface=None, rotate=0, **kwargs)

	Bases: luma.core.device.device [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device]

Serial interface to a monochrome PCD8544 LCD display.

On creation, an initialization sequence is pumped to the display
to properly configure it. Further control commands can then be called to
affect the brightness and other settings.

	Parameters

	
	serial_interface – The serial interface (usually a
luma.core.interface.serial.spi [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi] instance) to delegate sending
data and commands through.

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device width

	height (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device height

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – the supported color model, one of “1”, “RGB” or “RGBA” only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Sets the LCD contrast

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes a 1-bit PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and dumps it to the PCD8544
LCD display.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process

	Returns

	A new processed image

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
class luma.lcd.device.st7735(serial_interface=None, width=160, height=128, rotate=0, framebuffer='diff_to_previous', h_offset=0, v_offset=0, bgr=False, **kwargs)

	Bases: luma.core.device.device [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device]

Serial interface to a 262K color (6-6-6 RGB) ST7735 LCD display.

On creation, an initialization sequence is pumped to the display to properly
configure it. Further control commands can then be called to affect the
brightness and other settings.

	Parameters

	
	serial_interface – the serial interface (usually a
luma.core.interface.serial.spi [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi] instance) to delegate sending
data and commands through.

	width (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – The number of pixels laid out horizontally.

	height – The number of pixels laid out vertically.

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	framebuffer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Framebuffering strategy, currently values of
diff_to_previous or full_frame are only supported.

	bgr (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if device pixels are BGR order (rather than RGB).

	h_offset (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – Horizontal offset (in pixels) of screen to device memory
(default: 0).

	v_offset – Vertical offset (in pixels) of screen to device memory
(default: 0).

New in version 0.3.0.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device width

	height (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device height

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – the supported color model, one of “1”, “RGB” or “RGBA” only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(cmd, *args)

	Sends a command and an (optional) sequence of arguments through to the
delegated serial interface. Note that the arguments are passed through
as data.

	
contrast(level)

	NOT SUPPORTED

	Parameters

	level (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – Desired contrast level in the range of 0-255.

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Renders a 24-bit RGB image to the ST7735 LCD display. The 8-bit RGB
values are passed directly to the devices internal storage, but only
the 6 most-significant bits are used by the display.

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – The image to render.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process

	Returns

	A new processed image

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
class luma.lcd.device.ht1621(gpio=None, width=6, rotate=0, WR=11, DAT=10, CS=8, **kwargs)

	Bases: luma.core.device.device [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device]

Serial interface to a seven segment HT1621 monochrome LCD display.

On creation, an initialization sequence is pumped to the display to properly
configure it. Further control commands can then be called to affect the
brightness and other settings.

	Parameters

	
	gpio – The GPIO library to use (usually RPi.GPIO)
to delegate sending data and commands through.

	width (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – The number of 7 segment characters laid out horizontally.

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	WR (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – The write (SPI clock) pin to connect to, default BCM 11.

	DAT (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – The data pin to connect to, default BCM 10.

	CS (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – The chip select pin to connect to, default BCM 8.

New in version 0.4.0.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device width

	height (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device height

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – the supported color model, one of “1”, “RGB” or “RGBA” only.

	
cleanup()

	Attempt to reset the device & switching it off prior to exiting the
python process.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(cmd)

	

	
contrast(level)

	Switches the display contrast to the desired level, in the range
0-255. Note that setting the level to a low (or zero) value will
not necessarily dim the display to nearly off. In other words,
this method is NOT suitable for fade-in/out animation.

	Parameters

	level (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – Desired contrast level in the range of 0-255.

	
data(data)

	

	
display(image)

	Takes a 1-bit PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and dumps it to the PCD8544
LCD display.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process

	Returns

	A new processed image

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
class luma.lcd.device.uc1701x(serial_interface=None, rotate=0, **kwargs)

	Bases: luma.core.device.device [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device]

Serial interface to a monochrome UC1701X LCD display.

On creation, an initialization sequence is pumped to the display to properly
configure it. Further control commands can then be called to affect the
brightness and other settings.

	Parameters

	
	serial_interface – The serial interface (usually a
luma.core.interface.serial.spi [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi] instance) to delegate sending
data and commands through.

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

New in version 0.5.0.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device width

	height (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device height

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – the supported color model, one of “1”, “RGB” or “RGBA” only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	Initializes the device memory with an empty (blank) image.

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Sets the LCD contrast

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes a 1-bit PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and dumps it to the UC1701X
LCD display.

	
hide()

	Switches the display mode OFF, putting the device in low-power
sleep mode.

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process

	Returns

	A new processed image

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
show()

	Sets the display mode ON, waking the device out of a prior
low-power sleep mode.

	
class luma.lcd.device.ls013b4dn04(serial_interface=None, rotate=0, **kwargs)

	Bases: luma.core.device.device [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.device.device]

Serial interface to a monochrome LS013B4DN04 LCD display.

On creation, an initialization sequence is pumped to the display to properly
configure it. Further control commands can then be called to affect the
brightness and other settings.

	Parameters

	
	serial_interface – The serial interface (usually a
luma.core.interface.serial.spi [https://luma-core.readthedocs.io/en/latest/api-documentation.html#luma.core.interface.serial.spi] instance) to delegate sending
data and commands through.

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – An integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

New in version 1.1.0.

	
capabilities(width, height, rotate, mode='1')

	Assigns attributes such as width, height, size and
bounding_box correctly oriented from the supplied parameters.

	Parameters

	
	width (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device width

	height (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – the device height

	rotate (int [https://pillow.readthedocs.io/en/latest/reference/ImageMath.html#int]) – an integer value of 0 (default), 1, 2 or 3 only, where 0 is
no rotation, 1 is rotate 90° clockwise, 2 is 180° rotation and 3
represents 270° rotation.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – the supported color model, one of “1”, “RGB” or “RGBA” only.

	
cleanup()

	Attempt to switch the device off or put into low power mode (this
helps prolong the life of the device), clear the screen and close
resources associated with the underlying serial interface.

This is a managed function, which is called when the python processs
is being shutdown, so shouldn’t usually need be called directly in
application code.

	
clear()

	

	
command(*cmd)

	Sends a command or sequence of commands through to the delegated
serial interface.

	
contrast(value)

	Sets the LCD contrast

	
data(data)

	Sends a data byte or sequence of data bytes through to the delegated
serial interface.

	
display(image)

	Takes a 1-bit PIL.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#module-PIL.Image] and dumps it to the LS013B4DN04
LCD display.

	
hide()

	

	
preprocess(image)

	Provides a preprocessing facility (which may be overridden) whereby the supplied image is
rotated according to the device’s rotate capability. If this method is
overridden, it is important to call the super

	Parameters

	image (PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]) – An image to pre-process

	Returns

	A new processed image

	Return type

	PIL.Image.Image [https://pillow.readthedocs.io/en/latest/reference/Image.html#PIL.Image.Image]

	
reverseByte(n)

	

	
show()

	

	
toggleVCOM()

	

References

	http://elinux.org/Rpi_Low-level_peripherals#General_Purpose_Input.2FOutput_.28GPIO.29

	http://binerry.de/post/25787954149/pcd8544-library-for-raspberry-pi

	http://www.avdweb.nl/arduino/hardware-interfacing/nokia-5110-lcd.html

	http://www.raspberrypi.org/phpBB3/viewtopic.php?f=32&t=9814&start=100

	https://projects.drogon.net/raspberry-pi/wiringpi/pins/

	http://www.henningkarlsen.com/electronics/t_imageconverter_mono.php

	https://vimeo.com/41393421

	http://fritzing.org

	http://www.sitronix.com.tw/sitronix/product.nsf/Doc/ST7735?OpenDocument

	http://learn.adafruit.com/1-8-tft-display

	http://www.raspberrypi.org/phpBB3/viewtopic.php?t=28696&p=262909

	http://elinux.org/images/1/19/Passing_Time_With_SPI_Framebuffer_Driver.pdf

	http://www.flickr.com/photos/ngreatorex/7672743302/

	https://github.com/notro/fbtft

	https://github.com/rm-hull/st7735fb

	http://www.areinhardt.de/news/raspberry-pi-tft-display/

	http://www.whence.com/rpi/

	http://harizanov.com/product/1-8-tft-display-for-raspberry-pi/

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 luma	

 	
 	
 luma.lcd	

 	
 	
 luma.lcd.aux	

 	
 	
 luma.lcd.device	

Index

 B
 | C
 | D
 | E
 | H
 | L
 | P
 | R
 | S
 | T
 | U

B

 	
 	backlight (class in luma.lcd.aux)

C

 	
 	capabilities() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

 	cleanup() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

 	clear() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

 	
 	command() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

 	contrast() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

D

 	
 	data() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

 	
 	display() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

E

 	
 	enable() (luma.lcd.aux.backlight method)

H

 	
 	hide() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

 	
 	ht1621 (class in luma.lcd.device)

L

 	
 	ls013b4dn04 (class in luma.lcd.device)

 	luma.lcd (module)

 	
 	luma.lcd.aux (module)

 	luma.lcd.device (module)

P

 	
 	pcd8544 (class in luma.lcd.device)

 	preprocess() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

R

 	
 	reverseByte() (luma.lcd.device.ls013b4dn04 method)

S

 	
 	show() (luma.lcd.device.ht1621 method)

 	(luma.lcd.device.ls013b4dn04 method)

 	(luma.lcd.device.pcd8544 method)

 	(luma.lcd.device.st7735 method)

 	(luma.lcd.device.uc1701x method)

 	
 	st7735 (class in luma.lcd.device)

T

 	
 	toggleVCOM() (luma.lcd.device.ls013b4dn04 method)

U

 	
 	uc1701x (class in luma.lcd.device)

 _static/up-pressed.png

_images/ls013b4dn04.jpg
END 01
000000
DISP CS

_images/ht1621.jpg

_static/up.png

_images/inheritance-7ef2b3d2ede21533327e76f7ed4d8a7d125021e3.png
luma core.device dummy

luma.lcd device ht1621

-
-

luma led.aux backiight // luma led.device 1s013b4dn04

+f lumalcd device.pcdesad

luma.core.virtual terminal luma.core.device.device

luma core virtual sevensegment luma led.device 57735
~

luma core.virtual history
—
luma led.device uc1701x

luma core.mixin.capabilties

luma core virtual hotspot

luma core virtual snapshot

luma core virtual viewport

_images/pcd8544.png
Features:

1) Builtin Backlight

2) Easy communicaion with common MCU control

3) Philips PCDB544 LCD controller with SP! interface
4) Graphic LCD module with 84X48 pixel resolution.
5) Compatible to Nokia 5110, 3310 LCD

Specification:
Interface SPI serial connection
voltage 27Vio 33V
ﬁw <SmA (Backiight off), <20mA (Backikght on)
ng temperature 010 50 Degree Celsius
Storage temperature -10 to 70 Degree Celsius
Size (L x W x H) A5X45X5mm
LCD Controller Philips PCD8544
Pin Assignment:
f——————— 45 .00 ———————=]
l-—u.a—
Jo= 0 ey ‘/_ Ree SinTName Description
LR 0 T |VCC |271033V
2 |GND | Ground
o 3 | SCE | Chip enable (Active Low)
4 |RES |Resel (Active Low)
45.0mm 5 |DIC | Data/Command seiection
Low—Write command,
High— Wiite data.
& | SDIN | Serial input
L) 7 | SCLK | Clock input
Ld Ld 8 |LED |[Active High2.7 1032V

_images/st7735.jpg

_images/uc1701x.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Luma.LCD: Display drivers for PCD8544, ST7735, HT1621, UC1701X, LS013B4DN04

 		
 Introduction

 		
 Installation

 		
 Pre-requisites

 		
 Connecting the display

 		
 PCD8544

 		
 ST7735

 		
 HT1621

 		
 UC1701X

 		
 LS013B4DN04

 		
 Installing from PyPI

 		
 Python usage

 		
 Pixel Drivers

 		
 Color Model

 		
 Landscape / Portrait Orientation

 		
 Seven-Segment Drivers

 		
 Backlight Control

 		
 Examples

 		
 API Documentation

 		
 luma.lcd.aux

 		
 luma.lcd.device

 		
 References

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

